

Noise effects in PIC simulations relevant to the ECDI

Outline

- 1. Collisional effects & sub-Debye resolution
- 2. Noise estimate from fluctuation/dissipation
- 3. Excitation of normal modes due to fluctuation
- 4. Conclusions

PIC noise can affect results in various ways

- artificial collisionality introducing spurious damping.
- sampling-noise driven fluctuations interacting with physical modes.
- exists mostly in accessible physical modes of the system.

Collisions with finite-sized particles

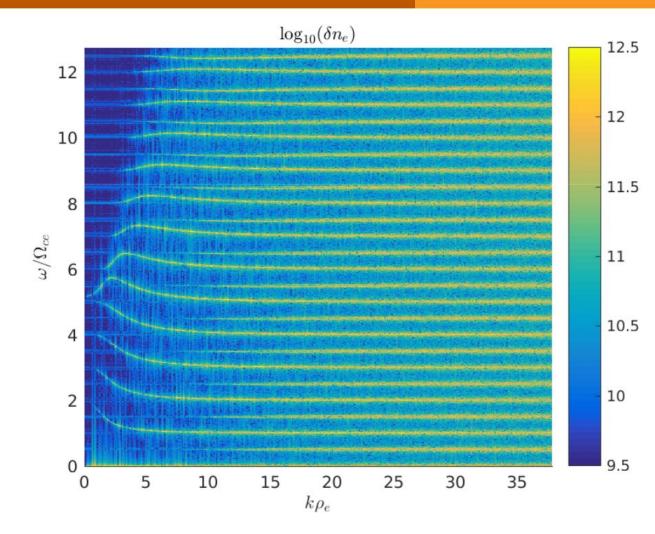
- Particle size limits interaction due to screening. For sub-Debye ranges collisions can occur.
- Okuda & Birdsall (PoF 13 8 2123): $\nu\approx nv_t\sigma=\frac{\pi\omega_{pe}}{16N_D}$ for Janhunen et al. PoP 2018: $\nu=5\cdot 10^{-6}\omega_{pe}$ for Croes et al. 2017: $\nu=4.5\cdot 10^{-5}\omega_{pe}$
- Turner (PoP 13 033506):
 - "... kinetic properties of the simulation are appreciably degraded when the $\nu \geq 10^{-4} \omega_{pe}$, ..."

Noise spectrum due to (thermal) fluctuations

Langdon (PoF 22 163), Krommes, Nevins, Decyk:

$$L|E(k,\omega)|^2/8\pi = -\frac{T}{\omega}\Im(\frac{1}{\varepsilon(k,\omega)})$$
$$\langle \frac{E_k^2 L}{8\pi} \rangle = \frac{T_p}{2} \left(1 + \frac{k^2 \lambda_{De}^2}{S^2(k)W^2(k)} \right)^{-1}$$

Limiting cases:


$$|e\phi(k,\omega_{pe})/T_e| = \frac{1}{\sqrt{N}k\lambda_{De}}$$
 $|e\phi(k,\omega_s)/T_e| = \frac{1}{\sqrt{N}}$

Plasma waves

IAW

Noise in a stable system exists in the normal modes of the plasma.

B=200 G, T_e=20 eV, T_i=1 eV, n_0=10^17 1/m3.

Conclusions

- Particle noise influences through:
 - effective collisionality (helped by finite sized particles).
 - fluctuations induced by thermal noise.
- Noise appears to exist in physical modes.
- ECDI exists in a regime of intermediate frequency (in the electron frame) and intermediate wavelength. Noise could be a problem.